366 Best evidence topic reports ## Bone Injection Gun placement of intraosseous needles ### Report by Andrew Curran, Specialist Registrar Emergency Medicine Checked by Ayan Sen, Clinical Fellow doi: 10.1136/emj.2005.024406 #### Abstract A short cut review was carried out to establish whether the Bone Injection Gun is better than a standard intraosseous (IO) needle at obtaining IO access. A total of 129 papers were found using the reported search, of which three represent the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these best papers are tabulated. A clinical bottom line is stated. ### Clinical scenario A 23 year old shocked patient is brought to into the Emergency Department resuscitation room. The trauma team are trying to gain vascular access. After five minutes of being unable to gain intravenous access you remember a recent training session on a Bone Injection Gun (BIG) and you wonder if this would be better to use than the standard IO needles that you have previously used? ### Three part question In [patients requiring IO access] is [the Bone Injection Gun better than standard IO needles] at [safely and rapidly acquiring IO access]? ### Search strategy Medline 1966-01/05 using the OVID interface. [exp Infusions, Intraosseous OR intraosseous infusions.mp OR intraosseous.mp OR IO.mp] AND [BIG.mp OR auto-injector.mp OR autos.mp OR bone injection gun.mp] LIMIT to English ### Search outcome Altogether 129 papers were found, of which three were relevant to the three part question. ### Comment(s) There are no published studies looking at the use of the BIG in live adults or children. Though this would be ideal it is unlikely to be achievable as IO placement is a rare event and there would be ethical and consent issues. We must therefore extrapolate data from other models. The paper by Calkins et al shows that the technique itself is easy to learn by non-medical trained responders, this may have implications for its use in prehospital care. This paper also used the screw tipped IO needle as the standard needle but in practice people may be more used to the standard straight needle. Waismann and Waismann suggest that they can be used succesfully in practice. Olsen found a higher failure rate in anaesthetised dogs but explained this was due to poor landmark identification rather than device failure. The differences in time to placement are unlikely to be clinically significant. From a clinical perspective there appears to be little to choose between them and issues such as cost and training may influence local decisions. ### **► CLINICAL BOTTOM LINE** The Bone Injection Gun appears to be equivalent in terms of success and possibly (but not clinically significantly) faster to use than standard IO needles at achieving IO access. Calkins MD, Fitzgerald G, Bentley TB, Burris D. Intraosseous infusion devices: a comparison for potential use in special operations *J Trauma* 2000;48:1068–74. Waisman M, Waisman D. Bone marrow infusion in adults *J Trauma* 1997;42:288–93. Olsen D, Packer BE, Perrett J, et al. Evaluation of the bone injection gun as a method for intraosseous placement for fluid therpay in adult dogs. Veterinary Surg 2002:31:533–40. # Nebulised levalbuterol or albuterol for lowering serum potassium Report by Herald Ostovar, Senior EM Resident Checked by Dr Jeffrey Jones, Research Director of the Emergency Medicine Residency Program and Dr Michael Brown, Director of the Emergency Medicine Residency Program doi: 10.1136/emj.2005.024414 ### Abstract A short cut review was carried out to establish whether nebulised levalbuterol is better than or equivalent to albuterol | Author, date
and country | Patient group | Study type
(level of evidence) | Outcomes | Key results | Study weaknesses | |---|--|-----------------------------------|-------------------------------|--|--| | Calkins MD
et al, 2000,
USA | 31 special operations corpsmen testing
4 IO devices on cadavers; BIG, screw tip
IO needles (2 other devices not relevant
to the three part question so results not give | Randomised
experimental trial | Success rate | BIG 94%, screw tip 97%
(not significant) | Using non-medical responders. By using cadavers there is no "clinical pressure" tachieve vascular access | | | | · , | Time to placement | BIG 70 s (SD 33), screw tip
88s (33) (not significant) | | | | | | Rank of preference
(1–4) | BIG average rank 2.3, screw tip average rank 2.5 (not significant) | | | Waisman M
and
Waisman D,
1997, USA | 19 patients for resuscitation in whom IV access could not be achieved within 10 minutes and 31 adults with fractures receiving regional anaesthesia | Prospective case
series | Success rate | 100% successful placement | Observational study with no comparisor
Small numbers. Lack of follow up in
resuscitation group | | | | | Time to placement | Time taken "1-2 minutes" | | | | | | Complications | None in 24 hours or 4 months for respective groups | | | Olsen D,
2002, USA | Adult dogs randomised to either IO gun
or a Jamshidi IO needle; 24 dogs
in each group | PRCT (animal) | Successful
placement | 20/24 (83%) for BIG v 23/24
(96%) for the Jamshidi; p=0.3475 | Animal study. Anaesthetised subjects. Direct relevance to humans questionabl Single operator did all procedures. The explain increased failure rate for BIG to be due to poor landmark identification rather than device failure | | | | | Average time for
placement | 22.4 s for BIG v 42 s for Jamshidi | | Best evidence topic reports 367 | Author, date and country | Patient group | Study type (level of evidence) | Outcomes | Key results | Study weaknesses | |---|--|---|--|--|--| | Lipworth BJ
et al, 1997,
UK | 12 volunteers were randomised into 4 study groups: nebulised R-albuterol (200–3200 µg), S-albuterol (200–3200 µg), RS-albuterol (400–6400 µg) or placebo | PCRT crossover | Pharmacodynamics at extrapulmonary
β2 receptors (fremor, plasma potassium,
heart rate) measured at 0-100 minutes
at 20 minute intervals | were found in baseline
plasma potassium values
(no p values provided) | Small doses of study drugs
used in healthy volunteers
Small sample size
Mean age (20.6) may not be
representative of majority of population
presenting with hyperkalaemia | | Gumbhir-
Shah K
et al, 1999,
USA | 13 asthmatic subjects randomised
to receive four cumulative doses of
either nebulised 1.25 mg levalbuterol
or 2.5 mg albuterol at 30 minute
intervals | RCT crossover | FEV ₁ , plasma potassium, plasma
glucose, heart rate, QTc interval,
and urine plasma drug concentration
at 1, 2, 4, 6, 8 hours after final dose | No significant difference between
R and RS albuterol in reduction of
plasma potassium levels (AUC p = 0.17) | Four consecutive small doses given at
30 minutes intervals may not be applicable
those patients presenting with pathological
hyperkalaemia Small sample size | | | | | Side effects | None severe. Included dizziness,
tachycardia, nervousness (greater
in R group), wheezing (greater in
RS group). All events resolved
spontaneously | | | Lotvall J
et al, 2001,
Sweden | 20 adult asthmatic patients were randomised into 4 study groups: nebulised R-albuterol (6.25–1600 μg), S-albuterol (6.25–1600 μg), RS-albuterol (12.5–3200 μg), or placebo | PCRT 4-way
crossover | FEV ₁ , heart rate, and plasma potassium
levels before dosing
FEV ₁ , heart rate and plasma potassium
levels 20 minutes after each dose | Rapid increase in plasma
potassium level (0.3–0.4 mmol/l)
after placebo administration
(no p value given) | Single K ⁺ level was measured
20 minutes after study drug
Small sample size
The dose of allbuterol required to reverse
hyperkalaemia is higher than standard
bronchodilator doses used in this study | | | | | Side effects | No serious adverse events and majority
of adverse events were reported after
treatment with R or RS albuterol. These
included tremor, palpitations, and
tachyarrhythmias | | | Pancu D
et al, 2003,
USA | 27 healthy adult volunteers;
9 nebulised normal saline,
9 albuterol (10 mg),
9 levalbuterol (2.5 mg) | Randomised,
double blind,
placebo controlled
trial | Serum potassium values at baseline | albuterol 3.9 (0.3) mEq/l, Tevalbuterol
4.1 (0.3) mEq/l, placebo 4.1
(0.3) mEq/l | This study measured potassium changes in
small sample of healthy volunteers. The
clinical significance of these small changes
in potassium is uncertain and these chang
may not be applicable to those patients
presenting with pathological hyperkalaemi
Objective vital signs were only recorded in
those patients reporting side effects | | | | | Serum potassium at 30 minutes | Albuterol reduced by 0.3 mEq /1;
levalbuterol reduced by 0.3 mEq/l; placebo
increased by 0.1 mEq/l; no significant
difference between β agonists. Both β
agonists better than placebo (p=0.005) | | | | | | Serum potassium at 60 minutes | Albuterol reduced by 0.3 mEq /1;
levalbuterol reduced by 0.5 mEq/l; placebo
showed no change. No significant difference
between β agonists. Both β agonists better
than placebo (p=0.001) | | | | | | Side effects | Levalbuterol caused fewer reported side effects than albuterol. Levalbuterol v albuterol: total percent reporting symptoms, 22% v 78%; nervousness, 0% v 56%; palpitations, 0% v 56%; tachycardia, 0% v 44% No p values provided | | for lowering serum potassium. Seven papers were found using the reported search, of which three presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these best papers are tabulated. A clinical bottom line is stated. ### Three part question In [patients with hyperkalaemia] is [levalbuterol better than albuterol] at reducing [serum potassium]? ### Clinical scenario A 67 year old man presents to the emergency department with chest pain and syncope. The electrocardiogram shows a wide QRS and peaked T-waves. Stat electrolytes show a potassium level of 7.3. While starting calcium gluconate, glucose/insulin, nebulised albuterol and kayexelate you wonder if substitution of levalbuterol for albuterol would have the same lowering effect on serum potassium and have fewer side effects. ### Search strategy Medline 1966–October 2004 using the OVID interface. [levalbuterol.mp or exp Albuterol/OR (albuterol or salbutamol).mp OR exp bronchodilator agents/OR exp adrenergic beta-agonists/OR beta-agonists.mp] AND [exp stereoisomerism/OR enantiomers.mp OR racemic.mp] AND [hyperkalemia.mp. or exp hyperkalemia/OR hyperkalaemia. mp OR exp potassium] LIMIT to human AND English language #### Search outcome Seven papers were found of which three were irrelevant to the study question. The remaining four papers are shown in table 3. ### Comment Equipotent nebulised levalbuterol appears to be as effective as albuterol in lowering serum potassium in healthy and asthmatic adults. Studies comparing these two medications in hyperkalaemic patients with comorbidities and on various medications would be helpful in establishing their comparative efficacy in treating common presenters to the emergency department. ### ► CLINICAL BOTTOM LINE Nebulised levalbuterol appears to be as effective as albuterol in lowering serum potassium in adults. Pancu D, LaFlamme M, Evans E, et al. Levalbuterol is as effective as racemic albuterol in lowering serum potassium. J Emerg Med 2003;25:13–16. Lovall J, Palmqvist M, Arvidsson P, et al. The therapeutic ratio of R-albuterol is comparable with that of RS-albuterol in asthmatic patients. J Allergy Clin Immunol 2001:108:726–31. Lipworth BJ, Clark DJ, Koch P, et al. Pharmacokinetics and exrapulmonary B2adrenoceptor activity of nebulized racemic salbutamol and its R and S isomers in healthy volunteers. *Thorax* 1997;**53**:849–52. **Gumbhir-Shah K,** Kellerman DJ, DeGraw S, *et al.* Pharmacokinetics and parmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. *Pulm Pharmacol Ther* 1999;**12**:353–62.